This paper studies new tests for the number of latent factors in a large cross-sectional factor model with small time dimension. These tests are based on the eigenvalues of variance-covariance matrices of (possibly weighted) asset returns, and rely on either the assumption of spherical errors, or instrumental variables for factor betas. We establish the asymptotic distributional results using expansion theorems based on perturbation theory for symmetric matrices. Our framework accommodates semi-strong factors in the systematic components. We propose a novel statistical test for weak factors against strong or semi-strong factors. We provide an empirical application to US equity data. Evidence for a different number of latent factors according to market downturns and market upturns, is statistically ambiguous in the considered subperiods. In particular, our results contradicts the common wisdom of a single factor model in bear markets.
翻译:本文研究对具有小时间维度的大型跨部门要素模型潜在因素数量的新测试,这些测试以(可能加权的)资产回报差异变量矩阵的元值为基础,依靠球形误差假设或乙型系数的工具变量。我们根据对称矩阵的扰动理论,确定无症状分配结果。我们的框架包含系统组成部分中的半强因素。我们提出了针对强力或半强力因素的弱因素的新统计测试。我们为美国股本数据提供了经验应用。根据市场下滑和市场回升的不同潜在因素的证据,在考虑的分期内,统计上模棱两可。特别是,我们的结果与熊市场单一要素模型的常识相矛盾。