Dictionary learning is a key tool for representation learning, that explains the data as linear combination of few basic elements. Yet, this analysis is not amenable in the context of graph learning, as graphs usually belong to different metric spaces. We fill this gap by proposing a new online Graph Dictionary Learning approach, which uses the Gromov Wasserstein divergence for the data fitting term. In our work, graphs are encoded through their nodes' pairwise relations and modeled as convex combination of graph atoms, i.e. dictionary elements, estimated thanks to an online stochastic algorithm, which operates on a dataset of unregistered graphs with potentially different number of nodes. Our approach naturally extends to labeled graphs, and is completed by a novel upper bound that can be used as a fast approximation of Gromov Wasserstein in the embedding space. We provide numerical evidences showing the interest of our approach for unsupervised embedding of graph datasets and for online graph subspace estimation and tracking.


翻译:词典学习是代表学习的关键工具,它将数据解释为少数基本元素的线性组合。然而,这一分析在图形学习的背景下并不适合,因为图表通常属于不同的量空间。我们通过提出一个新的在线图形词典学习方法来填补这一空白,该方法在数据匹配术语中采用格罗莫夫·瓦西尔斯坦差异法。在我们的工作中,图表通过结点的双向关系进行编码,并以图形原子(即字典元素)的二次组合模型来建模。由于在线的随机算法而估算,该算法在未注册的图表数据集中运行,其中的节点可能不同。我们的方法自然延伸至标注的图表,并由一个新颖的上层框完成,可以用作嵌入空间格罗莫夫·瓦西斯坦的快速近似值。我们提供了数字证据,表明我们的方法对不超超超嵌入图形数据集以及在线图形子空间估计和跟踪的兴趣。

0
下载
关闭预览

相关内容

稀疏表达的效果好坏和用的字典有着密切的关系。字典分两类,一种是预先给定的分析字典,比如小波基、DCT等,另一种则是针对特定数据集学习出特定的字典。这种学出来的字典能大大提升在特定数据集的效果。
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【2020新书】图机器学习,Graph-Powered Machine Learning
专知会员服务
339+阅读 · 2020年1月27日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Arxiv
0+阅读 · 2021年4月7日
Deep Graph Infomax
Arxiv
17+阅读 · 2018年12月21日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Arxiv
3+阅读 · 2018年2月7日
Arxiv
8+阅读 · 2014年6月27日
VIP会员
相关资讯
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关论文
Arxiv
0+阅读 · 2021年4月7日
Deep Graph Infomax
Arxiv
17+阅读 · 2018年12月21日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Arxiv
3+阅读 · 2018年2月7日
Arxiv
8+阅读 · 2014年6月27日
Top
微信扫码咨询专知VIP会员