The demand for accurate and fast trajectory tracking for multirotor Unmanned Aerial Vehicles (UAVs) have grown recently due to advances in UAV avionics technology and application domains. In many applications, the multirotor UAV is required to accurately perform aggressive maneuvers in challenging scenarios like the presence of external wind disturbances or in-flight payload changes. In this paper, we propose a systematic controller tuning approach based on identification results obtained by a recently developed Deep Neural Networks with the Modified Relay Feedback Test (DNN-MRFT) algorithm. We formulate a linear equivalent representation suitable for DNN-MRFT using feedback linearization. This representation enables the analytical investigation of different controller structures and tuning settings, and captures the non-linearity trends of the system. With this approach, the trade-off between performance and robustness in design was made possible which is convenient for the design of controllers of UAVs operating in uncertain environments. We demonstrate that our approach is adaptive and robust through a set of experiments, where accurate trajectory tracking is maintained despite significant changes to the UAV aerodynamic characteristics and the application of wind disturbance. Due to the model-based system design, it was possible to obtain low discrepancy between simulation and experimental results which is beneficial for potential use of the proposed approach for real-time model-based planning and fault detection tasks. We obtained RMSE of $3.59 \; cm$ when tracking aggressive trajectories in the presence of strong wind, which is on par with state-of-the-art.


翻译:由于UAV航空航空技术和应用领域的进步,对多机器人无人驾驶飞行器(无人驾驶飞行器)的准确和快速轨迹跟踪需求最近有所增加。在许多应用中,需要多机器人无人驾驶飞行器在具有挑战性的情景中,如外部风扰或飞行中有效载荷变化,准确进行侵略性动作。在本文件中,我们建议根据最近开发的深神经网络和修改后的Relay回馈测试(DNN-MRFT)算法获得的识别结果,采取系统控制器调控方法。我们利用反馈线性化,为DNN-MRTT设计一个适合DNN-MRTT的线性等值代表器。这种代表器可以对不同的控制器结构和调制结构进行分析性调查,调整设置,并捕捉到系统的非线性趋势趋势。采用这种方法,使设计中的性能和稳健性之间的平衡成为可能,便于设计在不确定的环境中运行的UAVAVA强型风力动力模型和机能探测方法。我们通过一系列实验来保持准确的轨迹跟踪,尽管UAVNN-MRET的强性能特征特征特征特征特征发生了重大变化,但在进行可能的模型设计中,因此,在进行可能的模型设计上,因此有可能使用。

0
下载
关闭预览

相关内容

【DeepMind】强化学习教程,83页ppt
专知会员服务
151+阅读 · 2020年8月7日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Nature 一周论文导读 | 2019 年 2 月 28 日
科研圈
13+阅读 · 2019年3月10日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
已删除
将门创投
5+阅读 · 2018年7月25日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
9+阅读 · 2018年3月10日
Arxiv
6+阅读 · 2018年2月8日
Arxiv
8+阅读 · 2018年1月30日
VIP会员
相关VIP内容
相关资讯
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Nature 一周论文导读 | 2019 年 2 月 28 日
科研圈
13+阅读 · 2019年3月10日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
已删除
将门创投
5+阅读 · 2018年7月25日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员