Can humans get arbitrarily capable reinforcement learning (RL) agents to do their bidding? Or will sufficiently capable RL agents always find ways to bypass their intended objectives by shortcutting their reward signal? This question impacts how far RL can be scaled, and whether alternative paradigms must be developed in order to build safe artificial general intelligence. In this paper, we study when an RL agent has an instrumental goal to tamper with its reward process, and describe design principles that prevent instrumental goals for two different types of reward tampering (reward function tampering and RF-input tampering). Combined, the design principles can prevent both types of reward tampering from being instrumental goals. The analysis benefits from causal influence diagrams to provide intuitive yet precise formalizations.


翻译:人类能否获得具有专横能力的强化学习(RL)代理进行投标? 或者足够有能力的RL代理总是会通过缩短其奖赏信号而找到绕过其预定目标的方法? 这一问题影响着RL的大小,以及是否必须开发替代模式来建立安全的人工智能。 在本文中,我们研究的是,当RL代理有一个工具目标来破坏其奖赏过程,并描述防止两种不同的奖赏篡改(奖励功能篡改和RF-投入篡改)的工具性目标的设计原则。 综合起来,设计原则可以防止两种奖赏篡改行为成为工具目标。 分析从因果关系图中得益于提供直观而精确的正规化。

0
下载
关闭预览

相关内容

迄今为止,产品设计师最友好的交互动画软件。

【DeepMind】强化学习教程,83页ppt
专知会员服务
154+阅读 · 2020年8月7日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Optimization for deep learning: theory and algorithms
Arxiv
105+阅读 · 2019年12月19日
Arxiv
4+阅读 · 2018年12月3日
Arxiv
8+阅读 · 2018年7月12日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员