This discussion paper demonstrates how longitudinal sentiment analyses can depict intertemporal dynamics on social media platforms, what challenges are inherent and how further research could benefit from a longitudinal perspective. Furthermore and since tools for sentiment analyses shall simplify and accelerate the analytical process regarding qualitative data at acceptable inter-rater reliability, their applicability in the context of radicalization research will be examined regarding the Tweets collected on January 6th 2021, the day of the storming of the U.S. Capitol in Washington. Therefore, a total of 49,350 Tweets will be analyzed evenly distributed within three different sequences: before, during and after the U.S. Capitol in Washington was stormed. These sequences highlight the intertemporal dynamics within comments on social media platforms as well as the possible benefits of a longitudinal perspective when using conditional means and conditional variances. Limitations regarding the identification of supporters of such events and associated hate speech as well as common application errors will be demonstrated as well. As a result, only under certain conditions a longitudinal sentiment analysis can increase the accuracy of evidence based predictions in the context of radicalization research.
翻译:本讨论文件表明,纵向情绪分析如何能描述社交媒体平台上的时际动态,什么是固有挑战,进一步研究如何从纵向观点中受益;此外,由于情绪分析工具应简化和加快关于质量数据的分析过程,以可接受的跨时代可靠性为标准,因此,将在2021年1月6日,即美国国会在华盛顿暴风雨当天收集的Tweets研究背景下审查这些数据在激进化研究中的可适用性。因此,总共49 350 Tweets将在三个不同序列中平均分布分析:美国华盛顿国会在暴风雨之前、期间和之后。这些序列突出社会媒体平台评论中的时际动态,以及使用有条件手段和有条件差异时纵向观点可能带来的好处。此外,在确定这些事件的支持者和相关仇恨言论的支持者以及常见应用错误方面存在限制。结果是,只有在某些条件下,只有纵向情绪分析才能提高激进化研究背景下基于证据的预测的准确性。