The growing use of supervised machine learning in research and industry has increased the need for labeled datasets. Crowdsourcing has emerged as a popular method to create data labels. However, working on large batches of tasks leads to worker fatigue, negatively impacting labeling quality. To address this, we present TruEyes, a collaborative crowdsourcing system, enabling the distribution of micro-tasks to mobile app users. TruEyes allows machine learning practitioners to publish labeling tasks, mobile app developers to integrate task ads for monetization, and users to label data instead of watching advertisements. To evaluate the system, we conducted an experiment with N=296 participants. Our results show that the quality of the labeled data is comparable to traditional crowdsourcing approaches and most users prefer task ads over traditional ads. We discuss extensions to the system and address how mobile advertisement space can be used as a productive resource in the future.
翻译:在研究和工业中越来越多地使用受监督的机器学习,这增加了对标签数据集的需求。众包已成为创建数据标签的流行方法。然而,大量任务的工作导致工人疲劳,对标签质量产生消极影响。为了解决这个问题,我们提出TruEyes,一个协作的众包系统,能够向移动应用程序用户分发微任务。TruEyes允许机器学习实践者发布标签任务,移动应用程序开发者将任务广告整合成货币化,用户将数据标签而不是看广告。为了评估这个系统,我们与296名参与者进行了实验。我们的结果显示,标签数据的质量与传统的众包方法相似,大多数用户更喜欢任务广告而不是传统的广告。我们讨论系统扩展,并探讨移动广告空间如何在未来用作生产性资源。