The Quadratic Assignment Problem (QAP) is a well-known NP-hard problem that is equivalent to optimizing a linear objective function over the QAP polytope. The QAP polytope with parameter $n$ - \qappolytope{n} - is defined as the convex hull of rank-$1$ matrices $xx^T$ with $x$ as the vectorized $n\times n$ permutation matrices. In this paper we consider all the known exponential-sized families of facet-defining inequalities of the QAP-polytope. We describe a new family of valid inequalities that we show to be facet-defining. We also show that membership testing (and hence optimizing) over some of the known classes of inequalities is coNP-complete. We complement our hardness results by showing a lower bound of $2^{\Omega(n)}$ on the extension complexity of all relaxations of \qappolytope{n} for which any of the known classes of inequalities are valid.
翻译:孔径分配问题(QAP)是一个众所周知的NP-硬性问题,相当于在QAP 聚点上优化线性目标功能。QAP 聚点,其参数为$-\qapopolytope{n} - 被定义为1美元基质的锥形壳xxx美元xx美元xx美元x美元x美元x美元,其矢量为 $n_timenn permutation 矩阵。在本文件中,我们认为所有已知的确定QAP-polytope 的面体大小不平等的指数式家庭。我们描述了一个有效的不平等新家族,我们展示了这些家族的面面部定义。我们还表明,对已知的不平等类别进行成员资格测试(并因此优化)是 CoNP的完整。我们通过在已知的不平等类别中任何类别的宽度的宽度的扩展复杂性上显示较低的2 ⁇ Omega(n)$来补充我们的硬性结果。