Perspective differences exist among different cultures or languages. A lack of mutual understanding among different groups about their perspectives on specific values or events may lead to uninformed decisions or biased opinions. Automatically understanding the group perspectives can provide essential background for many downstream applications of natural language processing techniques. In this paper, we study colingual groups and use language corpora as a proxy to identify their distributional perspectives. We present a novel computational approach to learn shared understandings, and benchmark our method by building culturally-aware models for the English, Chinese, and Japanese languages. On a held out set of diverse topics including marriage, corruption, democracy, our model achieves high correlation with human judgements regarding intra-group values and inter-group differences.
翻译:不同文化或语言之间存在不同观点;不同群体之间对特定价值观或事件的观点缺乏相互了解,可能导致不知情的决定或偏见意见;自动理解群体观点可为自然语言处理技术的许多下游应用提供必不可少的背景;在本文件中,我们研究共同语言群体,并使用语言社团作为代言人,以确定其分布观点;我们提出了一种新的计算方法,以学习共同理解,并通过为英语、华语和日语建立文化认知模式来衡量我们的方法;在包括婚姻、腐败、民主在内的一系列不同专题上,我们的模式与人类对群体内部价值观和群体间差异的判断高度相关。