State-space models constitute an effective modeling tool to describe multivariate time series and operate by maintaining an updated representation of the system state from which predictions are made. Within this framework, relational inductive biases, e.g., associated with functional dependencies existing among signals, are not explicitly exploited leaving unattended great opportunities for effective modeling approaches. The manuscript aims, for the first time, at filling this gap by matching state-space modeling and spatio-temporal data where the relational information, say the functional graph capturing latent dependencies, is learned directly from data and is allowed to change over time. Within a probabilistic formulation that accounts for the uncertainty in the data-generating process, an encoder-decoder architecture is proposed to learn the state-space model end-to-end on a downstream task. The proposed methodological framework generalizes several state-of-the-art methods and demonstrates to be effective in extracting meaningful relational information while achieving optimal forecasting performance in controlled environments.
翻译:国家空间模型是描述多变量时间序列的有效模型工具,通过保持系统状态的最新表述来运行,从而对多变量时间序列进行描述,并保持系统状态的最新表述,从而进行预测。在这一框架内,没有明确利用与信号之间功能依赖性相关的相关感应偏差,从而留下未受关注的巨大有效建模方法的机会。手稿首次旨在通过匹配国家空间建模和空间时空数据来填补这一空白,其中相关信息,如功能图直接捕捉潜在依赖性,从数据中直接学习,并允许随时间变化。在一种考虑到数据生成过程不确定性的概率性公式中,提议建立一个编码器-解码器结构,以学习国家空间模型的终点到终点,完成一项下游任务。拟议的方法框架概括了几种最先进的方法,并表明在获取有意义的关系信息的同时,在受控制的环境中实现最佳预测性能方面是有效的。