Natural data observed in $\mathbb{R}^n$ is often constrained to an $m$-dimensional manifold $\mathcal{M}$, where $m < n$. Current generative models represent this manifold by mapping an $m$-dimensional latent variable through a neural network $f_\theta: \mathbb{R}^m \to \mathbb{R}^n$. Such procedures, which we call pushforward models, incur a straightforward limitation: manifolds cannot in general be represented with a single parameterization, meaning that attempts to do so will incur either computational instability or the inability to learn probability densities within the manifold. To remedy this problem, we propose to model $\mathcal{M}$ as a neural implicit manifold: the set of zeros of a neural network. To learn the data distribution within $\mathcal{M}$, we introduce constrained energy-based models, which use a constrained variant of Langevin dynamics to train and sample within the learned manifold. The resulting model can be manipulated with an arithmetic of manifolds which allows practitioners to take unions and intersections of model manifolds. In experiments on synthetic and natural data, we show that constrained EBMs can learn manifold-supported distributions with complex topologies more accurately than pushforward models.
翻译:在 $mathbb{R ⁇ {R ⁇ n$ 中观测到的自然数据通常被限制在 $m- 维元 $\ mathb{mathcal{M}$ 美元。 目前的基因模型通过通过神经网络绘制 $f ⁇ theta:\mathbb{R ⁇ m\to\mathb{R ⁇ n$。 我们称之为推向模型的这种程序有直接的限制: 通常无法用单一参数化来代表多元体, 也就是说, 尝试这样做将带来计算不稳定或无法在多元中学习概率密度。 为了解决这个问题, 我们建议用一个内线性隐含的元值模型来模型来显示一个以美元为单位的维度潜潜值变量: $\mathb{R ⁇ m\m\to\\ m} 。 为了在$\mathalformax 中了解数据分布, 我们引入了有限的能源模型, 使用有限的兰氏动态变量来在所学的多元性中进行训练和取样。 由此产生的模型可以被调控, 。