Background: Gravity confounds arm movement ability in post-stroke hemiparesis. Reducing its influence allows effective practice leading to recovery. Yet, there is a scarcity of wearable devices suitable for personalized use across diverse therapeutic activities in the clinic. Objective: In this study, we investigated the safety, feasibility, and efficacy of anti-gravity therapy using the ExoNET device in post-stroke participants. Methods: Twenty chronic stroke survivors underwent six, 45-minute occupational therapy sessions while wearing the ExoNET, randomized into either the treatment (ExoNET tuned to gravity-support) or control group (ExoNET tuned to slack condition). Clinical outcomes were evaluated by a blinded-rater at baseline, post, and six-week follow-up sessions. Kinetic, kinematic, and patient experience outcomes were also assessed. Results: Mixed-effect models showed a significant improvement in Box and Blocks scores in the post-intervention session for the treatment group (effect size: 2.1, p = .04). No significant effects were found between the treatment and control groups for ARAT scores and other clinical metrics. Direct kinetic effects revealed a significant reduction in muscle activity during free exploration with an effect size of (-7.12%, p< 005). There were no significant longitudinal kinetic or kinematic trends. Subject feedback suggested a generally positive perception of the anti-gravity therapy. Conclusions: Anti-gravity therapy with the ExoNET is a safe and feasible treatment for post-stroke rehabilitation. The device provided anti-gravity forces, did not encumber range of motion, and clinical metrics of anti-gravity therapy demonstrated improvements in gross manual dexterity. Further research is required to explore potential benefits in broader clinical metrics.


翻译:暂无翻译

0
下载
关闭预览

相关内容

可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能,可穿戴设备将会对我们的生活、感知带来很大的转变。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
51+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
13+阅读 · 2014年12月31日
Augmentation for small object detection
Arxiv
13+阅读 · 2019年2月19日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
51+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
13+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员