The XGBoost method has many advantages and is especially suitable for statistical analysis of big data, but its loss function is limited to convex functions. In many specific applications, a nonconvex loss function would be preferable. In this paper, we propose a generalized XGBoost method, which requires weaker loss function condition and involves more general loss functions, including convex loss functions and some non-convex loss functions. Furthermore, this generalized XGBoost method is extended to multivariate loss function to form a more generalized XGBoost method. This method is a multivariate regularized tree boosting method, which can model multiple parameters in most of the frequently-used parametric probability distributions to be fitted by predictor variables. Meanwhile, the related algorithms and some examples in non-life insurance pricing are given.


翻译:XGBoost 方法有许多优点,特别适合对海量数据进行统计分析,但其损失功能仅限于 convex 函数。在许多具体应用中,非 convex 损失功能比较可取。在本文件中,我们建议采用通用的 XGBoost 方法,这种方法要求损失功能状况较弱,涉及更一般的损失功能,包括 convex 损失功能和一些非 convex 损失功能。此外,这种通用的 XGBoost 方法扩大到多变量损失功能,形成一种更为普遍的 XGBoost 方法。这种方法是一种多变量化的正规化树助推法,可以模拟多数经常使用的参数参数分布,以适应预测变量。同时,还给出了相关的算法和非寿命保险定价中的一些实例。

1
下载
关闭预览

相关内容

损失函数,在AI中亦称呼距离函数,度量函数。此处的距离代表的是抽象性的,代表真实数据与预测数据之间的误差。损失函数(loss function)是用来估量你模型的预测值f(x)与真实值Y的不一致程度,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好。损失函数是经验风险函数的核心部分,也是结构风险函数重要组成部分。
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Kaggle比赛实战教程
专知
14+阅读 · 2018年7月30日
Xgboost算法——Kaggle案例
R语言中文社区
13+阅读 · 2018年3月13日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
机器学习(23)之GBDT详解
机器学习算法与Python学习
12+阅读 · 2017年10月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Generating Fact Checking Explanations
Arxiv
9+阅读 · 2020年4月13日
Arxiv
11+阅读 · 2018年7月8日
Arxiv
7+阅读 · 2018年3月21日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Kaggle比赛实战教程
专知
14+阅读 · 2018年7月30日
Xgboost算法——Kaggle案例
R语言中文社区
13+阅读 · 2018年3月13日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
机器学习(23)之GBDT详解
机器学习算法与Python学习
12+阅读 · 2017年10月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员