When applying Hamiltonian operator splitting methods for the time integration of multi-species Vlasov-Maxwell-Landau systems, the reliable and efficient numerical approximation of the Landau equation represents a fundamental component of the entire algorithm. Substantial computational issues arise from the treatment of the physically most relevant three-dimensional case with Coulomb interaction. This work is concerned with the introduction and numerical comparison of novel approaches for the evaluation of the Landau collision operator. In the spirit of collocation, common tools are the identification of fundamental integrals, series expansions of the integral kernel and the density function on the main part of the velocity domain, and interpolation as well as quadrature approximation nearby the singularity of the kernel. Focusing on the favourable choice of the Fourier spectral method, their practical implementation uses the reduction to basic integrals, fast Fourier techniques, and summations along certain directions. Moreover, an important observation is that a significant percentage of the overall computational effort can be transferred to precomputations which are independent of the density function. For the purpose of exposition and numerical validation, the cases of constant, regular, and singular integral kernels are distinguished, and the procedure is adapted accordingly to the increasing complexity of the problem. With regard to the time integration of the Landau equation, the most expedient approach is applied in such a manner that the conservation of mass is ensured.
翻译:暂无翻译