For an abelian group $H$ acting on the set $[\ell]$, an $(H,\ell)$-lift of a graph $G_0$ is a graph obtained by replacing each vertex by $\ell$ copies, and each edge by a matching corresponding to the action of an element of $H$. In this work, we show the following explicit constructions of expanders obtained via abelian lifts. For every (transitive) abelian group $H \leqslant \text{Sym}(\ell)$, constant degree $d \ge 3$ and $\epsilon > 0$, we construct explicit $d$-regular expander graphs $G$ obtained from an $(H,\ell)$-lift of a (suitable) base $n$-vertex expander $G_0$ with the following parameters: (i) $\lambda(G) \le 2\sqrt{d-1} + \epsilon$, for any lift size $\ell \le 2^{n^{\delta}}$ where $\delta=\delta(d,\epsilon)$, (ii) $\lambda(G) \le \epsilon \cdot d$, for any lift size $\ell \le 2^{n^{\delta_0}}$ for a fixed $\delta_0 > 0$, when $d \ge d_0(\epsilon)$, or (iii) $\lambda(G) \le \widetilde{O}(\sqrt{d})$, for lift size ``exactly'' $\ell = 2^{\Theta(n)}$. As corollaries, we obtain explicit quantum lifted product codes of Panteleev and Kalachev of almost linear distance (and also in a wide range of parameters) and explicit classical quasi-cyclic LDPC codes with wide range of circulant sizes. Items $(i)$ and $(ii)$ above are obtained by extending the techniques of Mohanty, O'Donnell and Paredes [STOC 2020] for $2$-lifts to much larger abelian lift sizes (as a byproduct simplifying their construction). This is done by providing a new encoding of special walks arising in the trace power method, carefully "compressing'" depth-first search traversals. Result $(iii)$ is via a simpler proof of Agarwal et al. [SIAM J. Discrete Math 2019] at the expense of polylog factors in the expansion.
翻译:abelian group $H$ 在设置 $\\ ell] 上, $( H,\ ell) 提高 $ G_ 0美元 是一张图, 以美元取代每个顶端, 以美元值的动作匹配 $H 。 在这项工作中, 我们展示了以下通过 abelian 升降获得的扩张器的清晰构造 。 对于每个( transive) ( transial) $ h\ leqslant\ text{Sym} (ell) $, 以美元常数 $ G_ 美元 美元 美元 和 美元 美元, 以美元 美元= 美元= 美元 美元= 美元 美元= 美元 升升升 $ G_ 0 美元 。 对于一个( fun) 基 美元 升升升升升 $ g_ 0美元, 或以以下参数 :(i) $\ libda (x) a, lix_\\\ lax a.