The Mittag-Leffler function is computed via a quadrature approximation of a contour integral representation. We compare results for parabolic and hyperbolic contours, and give special attention to evaluation on the real line. The main point of difference with respect to similar approaches from the literature is the way that poles in the integrand are handled. Rational approximation of the Mittag-Leffler function on the negative real axis is also discussed.
翻译:Mittag-Leffler 函数是通过等距整体表示法的二次近似值来计算的。 我们比较抛物线和双曲等距的结果, 并特别注意对实线的评价。 与文献中类似方法的主要区别点是正方格中的极的处理方式。 也对负正轴上的 Mittag- Leffler 函数的逻辑近似值也进行了讨论 。