We study a risk-aware robot planning problem where a dispatcher must construct a package delivery plan that maximizes the expected reward for a robot delivering packages across multiple epochs. Each package has an associated reward for delivery and a risk of failure. If the robot fails while delivering a package, no future packages can be delivered and the cost of replacing the robot is incurred. The package delivery plan takes place over the course of either a finite or an infinite number of epochs, denoted as the finite horizon problem and infinite horizon problem, respectively. The dispatcher has to weigh the risk and reward of delivering packages during any given epoch against the potential loss of any future epoch's reward. By using the ratio between a package's reward and its risk of failure, we prove an optimal, greedy solution to both the infinite and finite horizon problems. The finite horizon problem can be solved optimally in $O(K n\log n)$ time where $K$ is the number of epochs and $n$ is the number of packages. We show an isomorphism between the infinite horizon problem and Markov Decision Processes to prove an optimal $O(n)$ time algorithm for the infinite horizon problem.


翻译:我们研究一个有风险意识的机器人规划问题, 调度员必须建造一个包件交付计划, 使在多个时代交付包件的预期回报最大化。 每个包件都有相应的交付奖励和失败风险。 如果机器人在交付包件时失败, 未来包件无法交付, 替换机器人的成本就会发生。 包件交付计划可以在一个有限或无限数目的时代进行, 分别以有限地平线问题和无限地平线问题为标志。 调度员必须权衡在任何特定时代交付包件的风险和奖励, 以防范未来包件奖励可能的损失。 通过使用包件奖励与失败风险之间的比率, 我们证明对无限和有限地平面问题都是最佳的、贪婪的解决办法。 有限地平线问题可以用美元( k n\log n) 来最佳地平线问题解决, 其中美元是局部地平线问题的数量, 美元是局部地平线问题的数量, 美元是包件的数量。 我们在无限地平面问题和Markov决定进程之间展示了无限地平面时程问题。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
清华大学研究生教育
3+阅读 · 2018年6月30日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年12月14日
Arxiv
0+阅读 · 2021年12月14日
Arxiv
0+阅读 · 2021年12月13日
Arxiv
4+阅读 · 2021年4月13日
Arxiv
5+阅读 · 2021年2月8日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
清华大学研究生教育
3+阅读 · 2018年6月30日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员