The purpose of this study is to explore students' backtracking patterns in using a digital textbook and reveal the relationship between backtracking behaviors and academic performance as well as learning styles. The study was carried out for two semesters on 102 university students and they are required to use a digital textbook system called DITeL to review courseware. Students' backtracking behaviors are characterized by seven backtracking features extracted from interaction log data and their learning styles are measured by Felder-Silverman learning style model. The results of the study reveal that there is a subgroup of students called backtrackers who backtrack more frequently and performed better than the average students. Furthermore, the causal inference analysis reveals that a higher initial ability can directly cause a higher frequency of backtracking, thus affecting the final test score. In addition, most backtrackers are reflective and visual learners, and the seven backtracking features are good predictors in automatically identifying learning styles. Based on the results of qualitative data analysis, recommendations were made on how to provide prompt backtracking assistants and automatically detect learning styles in digital textbooks.
翻译:这项研究的目的是探索学生使用数字教科书的回溯跟踪模式,并揭示回溯跟踪行为与学术表现以及学习风格之间的关系。该研究在102名大学生中进行了两个学期,他们需要使用称为DITEL的数字教科书系统来审查课程软件。学生回溯跟踪行为的特点是从互动日志数据中提取的七个回溯跟踪特征,他们的学习风格由Felder-Silverman学习风格模型测量。研究结果显示,有一个叫回溯跟踪者的学生分组,他们比普通学生更频繁地回溯跟踪并表现得更好。此外,因果分析表明,初始能力较高可直接导致回溯频率更高,从而影响最后测试分数。此外,大多数回溯跟踪者是反射和视觉学习者,七个回溯跟踪特征是自动识别学习风格的良好预测器。根据定性数据分析的结果,就如何提供快速回溯跟踪助理和自动检测数字教科书中的学习风格提出了建议。