Greedy best-first search (GBFS) and A* search (A*) are popular algorithms for path-finding on large graphs. Both use so-called heuristic functions, which estimate how close a vertex is to the goal. While heuristic functions have been handcrafted using domain knowledge, recent studies demonstrate that learning heuristic functions from data is effective in many applications. Motivated by this emerging approach, we study the sample complexity of learning heuristic functions for GBFS and A*. We build on a recent framework called \textit{data-driven algorithm design} and evaluate the \textit{pseudo-dimension} of a class of utility functions that measure the performance of parameterized algorithms. Assuming that a vertex set of size $n$ is fixed, we present $\mathrm{O}(n\lg n)$ and $\mathrm{O}(n^2\lg n)$ upper bounds on the pseudo-dimensions for GBFS and A*, respectively, parameterized by heuristic function values. The upper bound for A* can be improved to $\mathrm{O}(n^2\lg d)$ if every vertex has a degree of at most $d$ and to $\mathrm{O}(n \lg n)$ if edge weights are integers bounded by $\mathrm{poly}(n)$. We also give $\Omega(n)$ lower bounds for GBFS and A*, which imply that our bounds for GBFS and A* under the integer-weight condition are tight up to a $\lg n$ factor. Finally, we discuss a case where the performance of A* is measured by the suboptimality and show that we can sometimes obtain a better guarantee by combining a parameter-dependent worst-case bound with a sample complexity bound.
翻译:贪婪最佳搜索 (GBFS) 和 A* 搜索 (A*) 是用于大图中路径调查的流行算法。 两者都使用所谓的超光速函数, 该函数估计顶点离目标有多近。 虽然超光速函数是使用域知识手工制作的, 但最近的研究表明, 从数据中学习超光度函数在许多应用中是有效的。 我们受此新兴方法的驱动, 我们研究GBFS 和 A* 学习超光度函数的样本复杂性。 我们建在名为\ textit{ 数据驱动的算法设计} 的最近框架之上。 我们建在称为ntextit{ pata- dalg salform 的框架中, 并且评估测量参数值值的值的值值 。 假设一个大小为$n的顶值是 $( n) (n\ lg n) 美元 (n2\ lg n) 和 美元 (n2\ g n) 美元 (n) 内基值的上限值是用于 GBFS和 A* 的虚拟的( 美元) 内基值, 内基值的内基值和内基值的内基值的内基值, 的内值是每个的基值的内基值。