In the application of machine learning to real-life decision-making systems, e.g., credit scoring and criminal justice, the prediction outcomes might discriminate against people with sensitive attributes, leading to unfairness. The commonly used strategy in fair machine learning is to include fairness as a constraint or a penalization term in the minimization of the prediction loss, which ultimately limits the information given to decision-makers. In this paper, we introduce a new approach to handle fairness by formulating a stochastic multi-objective optimization problem for which the corresponding Pareto fronts uniquely and comprehensively define the accuracy-fairness trade-offs. We have then applied a stochastic approximation-type method to efficiently obtain well-spread and accurate Pareto fronts, and by doing so we can handle training data arriving in a streaming way.


翻译:在将机器学习应用到现实决策系统(例如信用评分和刑事司法)时,预测结果可能会歧视具有敏感属性的人,导致不公平;公平机器学习中常用的战略是将公平作为限制或惩罚性术语纳入预测损失的最小化,从而最终限制向决策者提供的信息;在本文件中,我们引入了一种处理公平问题的新方法,即提出一个随机多目标优化问题,对此,相应的Pareto阵线将独特和全面地界定准确性与公平性之间的取舍。我们随后采用了一种随机近似型方法,以便有效地获得广度和准确的Pareto战线,通过这样做,我们可以处理以流传方式到达的数据的培训工作。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
109+阅读 · 2020年3月12日
【CMU】机器学习导论课程(Introduction to Machine Learning)
专知会员服务
59+阅读 · 2019年8月26日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年3月28日
Arxiv
0+阅读 · 2021年3月27日
Arxiv
0+阅读 · 2021年3月26日
Arxiv
18+阅读 · 2021年3月16日
Arxiv
5+阅读 · 2018年5月28日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Top
微信扫码咨询专知VIP会员