We propose and analyze numerical schemes for the gradient flow of $Q$-tensor with the quasi-entropy. The quasi-entropy is a strictly convex, rotationally invariant elementary function, giving a singular potential constraining the eigenvalues of $Q$ within the physical range $(-1/3,2/3)$. Compared with the potential derived from the Bingham distribution, the quasi-entropy has the same asymptotic behavior and underlying physics. Meanwhile, it is very easy to evaluate because of its simple expression. For the elastic energy, we include all the rotationally invariant terms. The numerical schemes for the gradient flow are built on the nice properties of the quasi-entropy. The first-order time discretization is uniquely solvable, keeping the physical constraints and energy dissipation, which are all independent of the time step. The second-order time discretization keeps the first two properties unconditionally, and the third with an $O(1)$ restriction on the time step. These results also hold when we further incorporate a second-order discretization in space. Error estimates are also established for time discretization and full discretization. Numerical examples about defect patterns are presented to validate the theoretical results.
翻译:我们提议并分析用于半有机质的 Q $- tensor 的梯度流的数值方案。 准有机质是一种严格固定的、 旋转的、 旋转的初级功能, 给物理范围内的 $( -1/3, 2/3) 带来一个单一的潜在限制 。 与Bingham 分布产生的可能性相比, 准有机质具有相同的同质症状行为和基础物理学。 同时, 由于其简单的表达方式, 评估起来非常容易。 对于弹性能量, 我们包含所有旋转的变异性术语。 梯度流的数值方案建立在准有机质的优性能上。 第一阶时间分解模式是独特的可溶性, 保持物理限制和能量分解, 这些都与时间步骤无关。 第二阶时间分解使前两种特性保持无条件性, 第三阶分解使时间步骤有1美元的限制。 当我们进一步纳入空间第二阶次离散的离性参数时, 这些结果也保持不变。 错误估计也是为时间分化而确定的。