Future climate change scenarios are usually hypothesized using simulations from weather generators. However, there only a few works comparing and evaluating promising deep learning models for weather generation against classical approaches. This study shows preliminary results making such evaluations for the multisite precipitation synthesis task. We compared two open-source weather generators: IBMWeathergen (an extension of the Weathergen library) and RGeneratePrec, and two deep generative models: GAN and VAE, on a variety of metrics. Our preliminary results can serve as a guide for improving the design of deep learning architectures and algorithms for the multisite precipitation synthesis task.
翻译:未来气候变化情景通常使用天气生成器的模拟假设来假设未来气候变化情景,然而,只有少数工作对照古典方法来比较和评价有希望的气象生成深层学习模型。本研究显示了为多地点降水合成任务进行此类评估的初步结果。我们比较了两个开放源气候生成器:IBMWeathergen(气象图书馆的延伸)和RgeenatePrec,以及两个深层基因化模型:GAN和VAE(各种指标)。我们的初步结果可以作为改进多地点降水合成任务深层学习架构和算法的设计的指南。