Generating novel drug molecules with desired biological properties is a time consuming and complex task. Conditional generative adversarial models have recently been proposed as promising approaches for de novo drug design. In this paper, we propose a new generative model which extends an existing adversarial autoencoder (AAE) based model by stacking two models together. Our stacked approach generates more valid molecules, as well as molecules that are more similar to known drugs. We break down this challenging task into two sub-problems. A first stage model to learn primitive features from the molecules and gene expression data. A second stage model then takes these features to learn properties of the molecules and refine more valid molecules. Experiments and comparison to baseline methods on the LINCS L1000 dataset demonstrate that our proposed model has promising performance for molecular generation.
翻译:生成具有理想生物特性的新药物分子是一项耗时费时和复杂的任务。 条件性基因对抗模型最近被提议为新药物设计有希望的方法。 在本文中,我们提出一个新的基因模型,通过将两个模型堆叠在一起,扩展现有的对抗性自动编码模型(AAE)的模型。 我们的堆叠方法产生更有效的分子,以及更接近已知药物的分子。 我们将这一具有挑战性的任务分为两个子问题。 从分子和基因表达数据中学习原始特征的第一阶段模型。 第二阶段模型随后采用这些特征来学习分子的特性并精炼更有效的分子。 LINCS L1000数据集的实验和与基准方法的比较表明,我们提议的模型对于分子生成具有很有希望的性能。