We study the coboundary expansion of graphs, but instead of using $\mathbb{F}_2$ as the coefficient group when forming the cohomology, we use a sheaf on the graph. We prove that if the graph under discussion is a good expander, then it is also a good coboundary expander relative to any constant augmented sheaf (equivalently, relative to any coefficient group $R$); this, however, may fail for locally constant sheaves. We moreover show that if we take the quotient of a constant augmented sheaf on an excellent expander graph by a "small" subsheaf, then the quotient sheaf is still a good coboundary expander. Along the way, we prove a new version of the Expander Mixing Lemma applying to $r$-partite weighted graphs.
翻译:我们研究图表的边际扩展,但是在形成共生学时,我们没有使用 $mathbb{F ⁇ 2$作为系数组,而是在图形上使用一个外壳。我们证明,如果正在讨论的图表是一个好的扩张器,那么相对于任何恒定的扩展层(相对于任何系数组,相当于任何R美元),它也是一个好的共生扩张器;然而,这可能会因本地恒定的包层而失败。我们还表明,如果我们用一个“小”亚沙夫的精细扩展图以恒常加固的外草为基质,那么,外壳的商还是一个好的边际扩张器。与此同时,我们证明了对美元部分加权图应用的扩展器混 Lemma混合法的新版本。