Deep neural networks have been widely used in image denoising during the past few years. Even though they achieve great success on this problem, they are computationally inefficient which makes them inappropriate to be implemented in mobile devices. In this paper, we propose an efficient deep neural network for image denoising based on pixel-wise classification. Despite using a computationally efficient network cannot effectively remove the noises from any content, it is still capable to denoise from a specific type of pattern or texture. The proposed method follows such a divide and conquer scheme. We first use an efficient U-net to pixel-wisely classify pixels in the noisy image based on the local gradient statistics. Then we replace part of the convolution layers in existing denoising networks by the proposed Class Specific Convolution layers (CSConv) which use different weights for different classes of pixels. Quantitative and qualitative evaluations on public datasets demonstrate that the proposed method can reduce the computational costs without sacrificing the performance compared to state-of-the-art algorithms.
翻译:在过去几年里,深神经网络被广泛用于图像脱色。 尽管在这一问题上取得了巨大成功, 但它们在计算上效率低下, 因而不适合在移动设备中实施。 在本文中, 我们提出基于像素分类的高效深神经网络, 用于图像脱色。 尽管使用计算效率高的网络无法有效地消除任何内容中的噪音, 但是它仍然能够从特定类型的模式或纹理中下沉。 所建议的方法遵循了这种分化和征服方案。 我们首先使用高效的 U- net 来根据本地梯度统计对噪音图像中的像素进行像素的正确分类。 然后我们用拟议的分类特定变异层( CSConv) 取代了现有变异网络中的一部分混杂层, 这些变异层对不同种类的像素使用不同重量。 对公共数据集的定量和定性评估表明, 拟议的方法可以降低计算成本, 而不会牺牲与最新算法相比的性能。