'Hybrid meta-heuristics' is one of the most interesting recent trends in the field of optimization and feature selection (FS). In this paper, we have proposed a binary variant of Atom Search Optimization (ASO) and its hybrid with Simulated Annealing called ASO-SA techniques for FS. In order to map the real values used by ASO to the binary domain of FS, we have used two different transfer functions: S-shaped and V-shaped. We have hybridized this technique with a local search technique called, SA We have applied the proposed feature selection methods on 25 datasets from 4 different categories: UCI, Handwritten digit recognition, Text, non-text separation, and Facial emotion recognition. We have used 3 different classifiers (K-Nearest Neighbor, Multi-Layer Perceptron and Random Forest) for evaluating the strength of the selected featured by the binary ASO, ASO-SA and compared the results with some recent wrapper-based algorithms. The experimental results confirm the superiority of the proposed method both in terms of classification accuracy and number of selected features.
翻译:“Hybrid med-heuristics”是优化和特征选择(FS)领域最令人感兴趣的最新趋势之一。 在本文中,我们提出了Atom搜索优化(ASO)的二进制变异(ASO)及其与称为ASO-SA(FS)的模拟安纳林(Amerate Annaaling)技术的混合。为了绘制ASO(ASO)到FS二进制域的真实值图,我们使用了两种不同的转移功能:S型和V型。我们已经将这一技术与一个当地搜索技术(SA)相结合。我们已经对以下4个不同类别的25个数据集应用了拟议的特征选择方法:UCI(UCI)、手写数字识别、文本、非文本分解和法西色情感识别。我们使用了3个不同的分类器(K-Nearest Neighbor、Multi-Layer Percepron和随机森林)来评估二进制自动自动转换系统所选特征的强度,并将结果与最近的一些基于包装的算法进行了比较。实验结果证实了拟议方法在分类精确性和选定特征数量方面的优势。