Many cultures around the world believe that palm reading can be used to predict the future life of a person. Palmistry uses features of the hand such as palm lines, hand shape, or fingertip position. However, the research on palm-line detection is still scarce, many of them applied traditional image processing techniques. In most real-world scenarios, images usually are not in well-conditioned, causing these methods to severely under-perform. In this paper, we propose an algorithm to extract principle palm lines from an image of a person's hand. Our method applies deep learning networks (DNNs) to improve performance. Another challenge of this problem is the lack of training data. To deal with this issue, we handcrafted a dataset from scratch. From this dataset, we compare the performance of readily available methods with ours. Furthermore, based on the UNet segmentation neural network architecture and the knowledge of attention mechanism, we propose a highly efficient architecture to detect palm-lines. We proposed the Context Fusion Module to capture the most important context feature, which aims to improve segmentation accuracy. The experimental results show that it outperforms the other methods with the highest F1 Score about 99.42% and mIoU is 0.584 for the same dataset.
翻译:世界各地的许多文化都认为,可以使用棕榈阅读来预测一个人的未来生活。棕榈利用手掌的特征,如棕榈线、手形状或指尖位置等。然而,棕榈线探测研究仍然很少,其中许多采用传统图像处理技术。在大多数现实世界的情景中,图像通常不处于良好状态,导致这些方法严重落后。在本文中,我们建议一种算法,从一个人的手图中提取主棕榈线。我们的方法是运用深层次的学习网络(DNNS)来改善性能。另一个问题是缺乏培训数据。为了处理这个问题,我们手工制作了一个从零到零的数据集。我们从这个数据集中比较了现成方法的性能。此外,根据UNet分层神经网络结构以及关注机制的知识,我们建议了一个高效的架构来探测棕榈线。我们建议了一种环境放大模块来捕捉最重要的背景特征,目的是提高分层准确性。实验结果显示,我们从零到其他方法,99.44%。我们从头手工制作了一个数据集,比其他方法要高。