Metric elicitation is a recent framework for eliciting classification performance metrics that best reflect implicit user preferences based on the task and context. However, available elicitation strategies have been limited to linear (or quasi-linear) functions of predictive rates, which can be practically restrictive for many applications including fairness. This paper develops a strategy for eliciting more flexible multiclass metrics defined by quadratic functions of rates, designed to reflect human preferences better. We show its application in eliciting quadratic violation-based group-fair metrics. Our strategy requires only relative preference feedback, is robust to noise, and achieves near-optimal query complexity. We further extend this strategy to eliciting polynomial metrics -- thus broadening the use cases for metric elicitation.
翻译:计量引引是最近一个征求分类性能指标的框架,根据任务和背景,最能反映用户的暗含偏好;然而,现有的引引战略仅限于预测率的线性(或准线性)功能,对包括公平在内的许多应用可能实际上具有限制性。本文件为获取由比率的二次函数界定的更灵活的多级指标制定了战略,目的是更好地反映人类的偏好。我们展示了其在引出基于四级侵权的集团公平度量度方面的应用。我们的战略仅要求相对偏好反馈,强于噪音,并达到近乎最佳的查询复杂性。我们进一步扩展这一战略,以引出多级度度度度量度,从而扩大衡量引引的运用范围。