Variational inference techniques based on inducing variables provide an elegant framework for scalable posterior estimation in Gaussian process (GP) models. Besides enabling scalability, one of their main advantages over sparse approximations using direct marginal likelihood maximization is that they provide a robust alternative for point estimation of the inducing inputs, i.e. the location of the inducing variables. In this work we challenge the common wisdom that optimizing the inducing inputs in the variational framework yields optimal performance. We show that, by revisiting old model approximations such as the fully-independent training conditionals endowed with powerful sampling-based inference methods, treating both inducing locations and GP hyper-parameters in a Bayesian way can improve performance significantly. Based on stochastic gradient Hamiltonian Monte Carlo, we develop a fully Bayesian approach to scalable GP and deep GP models, and demonstrate its state-of-the-art performance through an extensive experimental campaign across several regression and classification problems.
翻译:基于诱导变量的变异推论技术为高山进程模型的可缩放后继器估算提供了一个优雅的框架。除了可缩放性外,其主要优势之一是利用直接边际可能性最大化,比稀释近似值高的一个主要优势是,它们为导引投入的点估提供了强有力的替代方法,即导引变量的位置。在这项工作中,我们质疑在变异框架中优化引导投入的共同智慧能够产生最佳性能。我们表明,通过重新审视旧的模型近似法,例如具有强有力的取样推断方法的完全独立的培训条件,以巴伊斯方式处理导出地点和高位高分光计,可以显著改善性能。基于随机梯度梯度梯度的汉密尔顿式蒙特卡洛,我们开发了一种完全的贝伊西亚方法,通过针对若干回归和分类问题开展广泛的实验运动,以可缩放的GP和深层GP模型展示其最新性能。