Many real-world IoT systems, which include a variety of internet-connected sensory devices, produce substantial amounts of multivariate time series data. Meanwhile, vital IoT infrastructures like smart power grids and water distribution networks are frequently targeted by cyber-attacks, making anomaly detection an important study topic. Modeling such relatedness is, nevertheless, unavoidable for any efficient and effective anomaly detection system, given the intricate topological and nonlinear connections that are originally unknown among sensors. Furthermore, detecting anomalies in multivariate time series is difficult due to their temporal dependency and stochasticity. This paper presented GTA, a new framework for multivariate time series anomaly detection that involves automatically learning a graph structure, graph convolution, and modeling temporal dependency using a Transformer-based architecture. The connection learning policy, which is based on the Gumbel-softmax sampling approach to learn bi-directed links among sensors directly, is at the heart of learning graph structure. To describe the anomaly information flow between network nodes, we introduced a new graph convolution called Influence Propagation convolution. In addition, to tackle the quadratic complexity barrier, we suggested a multi-branch attention mechanism to replace the original multi-head self-attention method. Extensive experiments on four publicly available anomaly detection benchmarks further demonstrate the superiority of our approach over alternative state-of-the-arts. Codes are available at https://github.com/ZEKAICHEN/GTA.
翻译:许多真实世界的IOT系统,其中包括各种互联网连接的感官装置,产生大量多变时间序列数据。与此同时,智能电网和水分配网络等重要的IOT基础设施经常成为网络攻击的目标,使异常点探测成为一个重要的研究课题。鉴于传感器之间最初未知的复杂地貌和非线性连接,建立这种关联性对于任何高效和有效的异常探测系统来说都是不可避免的。此外,多变时间序列中的异常点因其时间依赖性和随机性而难以发现。本文介绍了一个新的多变时间序列异常点探测新框架GTA,这个框架涉及自动学习图表结构、图集和以变异器为基础的结构模拟时间依赖性。基于Gumbel-软式取样法的连接性学习政策,以直接学习传感器之间的双向联系,是学习图表结构的核心。为了描述网络节点之间的异常信息流动,我们引入了一个名为“变异性变异性变异性”的新的图形。此外,为了自动学习图表结构的图像结构化多变异性测试系统,我们建议用原始的图像变异性变异性变异性变异性研究系统,在可变现的多变异性系统上展示了可变现式系统。我们现有的变异性变异性变异性变现的图像变异性变异性变现的多变式的变式系统,在可变式的变式的变异性变式变式的变式的变式的变现式的变式的变式的变异性研究系统,在可变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变制的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变制方法,在可变式的变式的变式的变式的变式的变式的变式的变式的变式的变式式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式