Many real-world IoT systems, which include a variety of internet-connected sensory devices, produce substantial amounts of multivariate time series data. Meanwhile, vital IoT infrastructures like smart power grids and water distribution networks are frequently targeted by cyber-attacks, making anomaly detection an important study topic. Modeling such relatedness is, nevertheless, unavoidable for any efficient and effective anomaly detection system, given the intricate topological and nonlinear connections that are originally unknown among sensors. Furthermore, detecting anomalies in multivariate time series is difficult due to their temporal dependency and stochasticity. This paper presented GTA, a new framework for multivariate time series anomaly detection that involves automatically learning a graph structure, graph convolution, and modeling temporal dependency using a Transformer-based architecture. The connection learning policy, which is based on the Gumbel-softmax sampling approach to learn bi-directed links among sensors directly, is at the heart of learning graph structure. To describe the anomaly information flow between network nodes, we introduced a new graph convolution called Influence Propagation convolution. In addition, to tackle the quadratic complexity barrier, we suggested a multi-branch attention mechanism to replace the original multi-head self-attention method. Extensive experiments on four publicly available anomaly detection benchmarks further demonstrate the superiority of our approach over alternative state-of-the-arts. Codes are available at https://github.com/ZEKAICHEN/GTA.


翻译:许多真实世界的IOT系统,其中包括各种互联网连接的感官装置,产生大量多变时间序列数据。与此同时,智能电网和水分配网络等重要的IOT基础设施经常成为网络攻击的目标,使异常点探测成为一个重要的研究课题。鉴于传感器之间最初未知的复杂地貌和非线性连接,建立这种关联性对于任何高效和有效的异常探测系统来说都是不可避免的。此外,多变时间序列中的异常点因其时间依赖性和随机性而难以发现。本文介绍了一个新的多变时间序列异常点探测新框架GTA,这个框架涉及自动学习图表结构、图集和以变异器为基础的结构模拟时间依赖性。基于Gumbel-软式取样法的连接性学习政策,以直接学习传感器之间的双向联系,是学习图表结构的核心。为了描述网络节点之间的异常信息流动,我们引入了一个名为“变异性变异性变异性”的新的图形。此外,为了自动学习图表结构的图像结构化多变异性测试系统,我们建议用原始的图像变异性变异性变异性变异性研究系统,在可变现的多变异性系统上展示了可变现式系统。我们现有的变异性变异性变异性变现的图像变异性变异性变现的多变式的变式系统,在可变式的变式的变异性变式变式的变式的变式的变现式的变式的变式的变异性研究系统,在可变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变制的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变制方法,在可变式的变式的变式的变式的变式的变式的变式的变式的变式的变式式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式

1
下载
关闭预览

相关内容

在数据挖掘中,异常检测(英语:anomaly detection)对不符合预期模式或数据集中其他项目的项目、事件或观测值的识别。通常异常项目会转变成银行欺诈、结构缺陷、医疗问题、文本错误等类型的问题。异常也被称为离群值、新奇、噪声、偏差和例外。 特别是在检测滥用与网络入侵时,有趣性对象往往不是罕见对象,但却是超出预料的突发活动。这种模式不遵循通常统计定义中把异常点看作是罕见对象,于是许多异常检测方法(特别是无监督的方法)将对此类数据失效,除非进行了合适的聚集。相反,聚类分析算法可能可以检测出这些模式形成的微聚类。 有三大类异常检测方法。[1] 在假设数据集中大多数实例都是正常的前提下,无监督异常检测方法能通过寻找与其他数据最不匹配的实例来检测出未标记测试数据的异常。监督式异常检测方法需要一个已经被标记“正常”与“异常”的数据集,并涉及到训练分类器(与许多其他的统计分类问题的关键区别是异常检测的内在不均衡性)。半监督式异常检测方法根据一个给定的正常训练数据集创建一个表示正常行为的模型,然后检测由学习模型生成的测试实例的可能性。
【图与几何深度学习】Graph and geometric deep learning,49页ppt
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Salient Objects in Clutter
Arxiv
0+阅读 · 2022年4月18日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员