Tree perception is an essential building block toward autonomous forestry operations. Current developments generally consider input data from lidar sensors to solve forest navigation, tree detection and diameter estimation problems. Whereas cameras paired with deep learning algorithms usually address species classification or forest anomaly detection. In either of these cases, data unavailability and forest diversity restrain deep learning developments for autonomous systems. So, we propose two densely annotated image datasets - 43k synthetic, 100 real - for bounding box, segmentation mask and keypoint detections to assess the potential of vision-based methods. Deep neural network models trained on our datasets achieve a precision of 90.4% for tree detection, 87.2% for tree segmentation, and centimeter accurate keypoint estimations. We measure our models' generalizability when testing it on other forest datasets, and their scalability with different dataset sizes and architectural improvements. Overall, the experimental results offer promising avenues toward autonomous tree felling operations and other applied forestry problems. The datasets and pre-trained models in this article are publicly available on \href{https://github.com/norlab-ulaval/PercepTreeV1}{GitHub} (https://github.com/norlab-ulaval/PercepTreeV1).
翻译:树木感知是自主林业运作的基本建筑基石。 当前的发展一般考虑来自利达尔传感器的输入数据,以解决森林导航、树木探测和直径估计问题。 相机与深学习算法结合,通常处理物种分类或森林异常现象的探测。 在这两种情况下,数据缺乏和森林多样性都限制了自主系统的深学习发展。 因此,我们建议使用两个加注的密集图像数据集 — 43k合成, 100真实 — 用于捆绑框、分解遮罩和关键点探测,以评估基于愿景的方法的潜力。 以我们数据集培训的深神经网络模型在树探测方面达到90.4%的精确度,树分解和厘米精确关键点估计方面达到87.2%。 我们在测试其他森林数据集时衡量我们的模型的可通用性,及其与不同数据集大小和建筑改进的可缩缩缩性。 总体而言,实验结果为自主树木砍伐操作和其他应用的森林问题提供了有希望的途径。 本文章中的数据集和预先训练模型可公开查阅到以下网站:http://github.com/nolab- culab_Grualpral_Grualpral/Grub_revereval/Greal_reval/Greba_181.1.。