We introduce MIM (Masked Image Modeling)-Refiner, a contrastive learning boost for pre-trained MIM models. MIM-Refiner is motivated by the insight that strong representations within MIM models generally reside in intermediate layers. Accordingly, MIM-Refiner leverages multiple contrastive heads that are connected to different intermediate layers. In each head, a modified nearest neighbor objective constructs semantic clusters that capture semantic information which improves performance on downstream tasks, including off-the-shelf and fine-tuning settings. The refinement process is short and simple - yet highly effective. Within a few epochs, we refine the features of MIM models from subpar to state-of-the-art, off-the-shelf features. Refining a ViT-H, pre-trained with data2vec 2.0 on ImageNet-1K, sets a new state-of-the-art in linear probing (84.7%) and low-shot classification among models that are pre-trained on ImageNet-1K. At ImageNet-1K 1-shot classification, MIM-Refiner advances the state-of-the-art to 64.2%, outperforming larger models that were trained on up to 2000 times more data such as DINOv2-g, OpenCLIP-G and MAWS-6.5B.
翻译:暂无翻译