In this article, we establish a near-optimal convergence rate for the CLT of linear eigenvalue statistics of Wigner matrices, in Kolmogorov-Smirnov distance. For all test functions $f\in C^5(\mathbb R)$, we show that the convergence rate is either $N^{-1/2+\varepsilon}$ or $N^{-1+\varepsilon}$, depending on the first Chebyshev coefficient of $f$ and the third moment of the diagonal matrix entries. The condition that distinguishes these two rates is necessary and sufficient. For a general class of test functions, we further identify matching lower bounds for the convergence rates. In addition, we identify an explicit, non-universal contribution in the linear eigenvalue statistics, which is responsible for the slow rate $N^{-1/2+\varepsilon}$ for non-Gaussian ensembles. By removing this non-universal part, we show that the shifted linear eigenvalue statistics have the unified convergence rate $N^{-1+\varepsilon}$ for all test functions.


翻译:在本篇文章中,我们用科尔莫戈洛夫-斯米尔诺夫距离为维格勒矩阵的线性电子值统计CLT设定了接近最佳的趋同率。对于所有测试函数, $f\ in C5 (\ mathbb R) $, 我们显示, 趋同率要么是 $N ⁇ -1/2 ⁇ varepsilon} $, 要么是 $ ⁇ -1 ⁇ -1 ⁇ ⁇ ⁇ varepsilon} $, 取决于第一个Chebyshev 系数($ f) 和对角矩阵条目的第三个时刻。 区分这两个比率的条件既必要又充分。 对于一般的测试函数, 我们进一步确定匹配趋同率的下限。 此外, 我们在线性电子值统计中确定一个明确的非通用贡献值, 导致非加萨西南方币的低速率 $ ⁇ -1/2 ⁇ varepsilon}。 通过删除这一非普遍性部分, 我们显示, 转移的线性电子值统计具有所有测试功能的统一趋同率 $N ⁇ -1 ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ } 。

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
28+阅读 · 2020年11月4日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
18+阅读 · 2021年3月16日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
17+阅读 · 2018年4月2日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员