We present a novel view on principal component analysis (PCA) as a competitive game in which each approximate eigenvector is controlled by a player whose goal is to maximize their own utility function. We analyze the properties of this PCA game and the behavior of its gradient based updates. The resulting algorithm -- which combines elements from Oja's rule with a generalized Gram-Schmidt orthogonalization -- is naturally decentralized and hence parallelizable through message passing. We demonstrate the scalability of the algorithm with experiments on large image datasets and neural network activations. We discuss how this new view of PCA as a differentiable game can lead to further algorithmic developments and insights.
翻译:我们对主要部件分析(PCA)作为一种竞争游戏提出了新观点,其中每种近似电子元体都由一个玩家控制,该玩家的目标是最大限度地发挥其自身的实用功能。我们分析了这个CPA游戏的特性及其基于梯度的更新行为。由此产生的算法,将Oja规则中的要素与普遍Gram-Schmidt正方形化结合起来,是自然分散的,因此通过传递信息可以平行的。我们展示了算法与大型图像数据集和神经网络激活实验的可缩放性。我们讨论了这种将CPA视为不同游戏的新观点如何导致进一步的算法发展和洞察力。