Error-tolerant graph matching gathers an important family of problems. These problems aim at finding correspondences between two graphs while integrating an error model. In the Graph Edit Distance (GED) problem, the insertion/deletion of edges/nodes from one graph to another is explicitly expressed by the error model. At the opposite, the problem commonly referred to as "graph matching" does not explicitly express such operations. For decades, these two problems have split the research community in two separated parts. It resulted in the design of different solvers for the two problems. In this paper, we propose a unification of both problems thanks to a single model. We give the proof that the two problems are equivalent under a reformulation of the error models. This unification makes possible the use on both problems of existing solving methods from the two communities.
翻译:错误容忍图形匹配会收集一系列重要的问题。 这些问题的目的是在整合错误模型的同时找到两个图表之间的对应关系。 在图形编辑距离( GED) 问题中, 错误模型明确显示了从一个图形插入/ 删除边缘/ 节点到另一个图形。 相反, 通常称为“ 绘图匹配” 的问题并没有明确表达这样的操作 。 几十年来, 这两个问题将研究群体分成两个不同的部分, 导致两个问题的不同解答器的设计。 在本文中, 我们建议使用一个单一的模型来统一这两个问题。 我们提供证据, 在重拟错误模型时这两个问题相等 。 这一统一使得两个社区对现有解决办法的两个问题都有可能使用。