In this work, we construct and derive a new class of exponentially fitted two-derivative diagonally implicit Runge--Kutta (EFTDDIRK) methods for the numerical solution of differential equations with oscillatory solutions. First, a general format of so-called modified two-derivative diagonally implicit Runge--Kutta methods (TDDIRK) is proposed. Their order conditions up to order six are derived by introducing a set of bi-coloured rooted trees and deriving new elementary weights. Next, we build exponential fitting conditions in order for these modified TDDIRK methods to treat oscillatory solutions, leading to EFTDDIRK methods. In particular, a family of 2-stage fourth-order, a fifth-order, and a 3-stage sixth-order EFTDDIRK schemes are derived. These can be considered as superconvergent methods. The stability and phase-lag analysis of the new methods are also investigated, leading to optimized fourth-order schemes, which turn out to be much more accurate and efficient than their non-optimized versions. Finally, we carry out numerical experiments on some oscillatory test problems. Our numerical results clearly demonstrate the accuracy and efficiency of the newly derived methods when compared with existing implicit Runge--Kutta methods and two-derivative Runge--Kutta methods of the same order in the literature.


翻译:在这项工作中,我们建造并开发出一个新的类别,用双色根植树和产生新的基本重量,来制造和产生一个具有双色底植树和六级的两代底植树(EFTDDIRK)的指数性双向隐含龙格-库塔(EFTDDIRK)方法(EFTDDIRK)方法,用于用螺旋形解析方程式解决不同方程式的数值解决方案。首先,提出了所谓的修改的两代半半隐含龙格-库塔方法(TDDIRK)的一般格式。这些方法的顺序条件可以被认为是超级趋同的方法。对新方法的稳定性和阶段级分析也进行了调查,从而优化了第四级方案,这些方法比这些经过修改的TDDIRITK方法更准确和高效,从而导致采用EFTDDIRRK方法。最后,我们用目前两种不源取序的流程方法来明确展示了我们当前排序方法的运行效率。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
【普林斯顿大学-微软】加权元学习,Weighted Meta-Learning
专知会员服务
40+阅读 · 2020年3月25日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
280+阅读 · 2019年10月9日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
10+阅读 · 2019年1月29日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年2月26日
Arxiv
6+阅读 · 2018年10月3日
VIP会员
相关VIP内容
【普林斯顿大学-微软】加权元学习,Weighted Meta-Learning
专知会员服务
40+阅读 · 2020年3月25日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
280+阅读 · 2019年10月9日
相关资讯
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
10+阅读 · 2019年1月29日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员