Goal recognition aims to recognize the set of candidate goals that are compatible with the observed behavior of an agent. In this paper, we develop a method based on the operator-counting framework that efficiently computes solutions that satisfy the observations and uses the information generated to solve goal recognition tasks. Our method reasons explicitly about both partial and noisy observations: estimating uncertainty for the former, and satisfying observations given the unreliability of the sensor for the latter. We evaluate our approach empirically over a large data set, analyzing its components on how each can impact the quality of the solutions. In general, our approach is superior to previous methods in terms of agreement ratio, accuracy, and spread. Finally, our approach paves the way for new research on combinatorial optimization to solve goal recognition tasks.
翻译:目标确认旨在承认符合代理人观察到的行为的一组候选目标。在本文中,我们根据操作者计算框架制定了一种方法,有效地计算满足观察结果的解决办法,并利用产生的信息解决目标确认任务。我们的方法理由明确包括片面和吵闹的观察:估计前者的不确定性,鉴于传感器对后者的不可靠性,令人满意的观察结果。我们从经验角度对一个大型数据集进行我们的方法评估,分析其中各组成部分如何影响解决方案的质量。一般来说,我们的方法在协议比率、准确性和传播方面优于以往的方法。最后,我们的方法为对组合优化进行新的研究,以解决目标确认任务铺平了道路。