The group testing problem consists of determining a small set of defective items from a larger set of items based on a number of possibly-noisy tests, and has numerous practical applications. One of the defining features of group testing is whether the tests are adaptive (i.e., a given test can be chosen based on all previous outcomes) or non-adaptive (i.e., all tests must be chosen in advance). In this paper, building on the success of binary splitting techniques in noiseless group testing (Hwang, 1972), we introduce noisy group testing algorithms that apply noisy binary search as a subroutine. We provide three variations of this approach with increasing complexity, culminating in an algorithm that succeeds using a number of tests that matches the best known previously (Scarlett, 2019), while overcoming fundamental practical limitations of the existing approach, and more precisely capturing the dependence of the number of tests on the error probability. We provide numerical experiments demonstrating that adaptive group testing strategies based on noisy binary search can be highly effective in practice, using significantly fewer tests compared to state-of-the-art non-adaptive strategies.


翻译:组测试问题包括从一系列可能的神经测试的基础上,从一系列更大的物品中确定一小组有缺陷的物品,这组测试具有许多实际应用。组测试的决定性特征之一是测试是适应性的(即根据以往所有结果选择某一项测试)还是非适应性的(即必须事先选择所有测试)。在本文中,在无噪音群体测试中二分法的成功基础上(黄光,1972年),我们引入了将噪声二进制搜索作为一种子例程的噪音组测试算法。我们提供了这一方法越来越复杂的三种变式,最终形成了一种算法,它利用与以前最著名的试验(Scarlett,2019年)相匹配的一些测试获得成功,同时克服了现有方法的基本实际局限性,更准确地掌握了测试数对误率的依赖性。我们提供了数字实验,表明基于噪音二进式搜索的适应性组测试策略在实践中可以非常有效,使用比目前最先进的非适应性战略要少得多的测试。

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2021年4月2日
【AAAI2021】 层次图胶囊网络
专知会员服务
83+阅读 · 2020年12月18日
【CVPR2020-北京大学】自适应间隔损失的提升小样本学习
专知会员服务
84+阅读 · 2020年6月9日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月25日
Arxiv
0+阅读 · 2021年8月20日
Arxiv
7+阅读 · 2018年3月22日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
5+阅读 · 2018年1月29日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员