There is promising potential in the application of algorithmic facial landmark estimation to the early prediction, in infants, of pediatric developmental disorders and other conditions. However, the performance of these deep learning algorithms is severely hampered by the scarcity of infant data. To spur the development of facial landmarking systems for infants, we introduce InfAnFace, a diverse, richly-annotated dataset of infant faces. We use InfAnFace to benchmark the performance of existing facial landmark estimation algorithms that are trained on adult faces and demonstrate there is a significant domain gap between the representations learned by these algorithms when applied on infant vs. adult faces. Finally, we put forward the next potential steps to bridge that gap.


翻译:在早期预测婴儿的儿科发育障碍和其他状况时,应用算法面部标志性估计具有大有潜力。然而,由于婴儿数据稀缺,这些深层次的学习算法的运行受到严重阻碍。为了刺激婴儿面部标志性系统的开发,我们引入了InfAnFace,这是一套多样的、有详细注释的婴儿面孔数据集。我们使用InfAnFace来衡量成人面部训练的现有面部标志性估计算法的性能,并表明这些算法在对婴儿与成人面部应用时所学的表述存在巨大的领域差距。最后,我们提出了今后可能采取的缩小这一差距的步骤。

0
下载
关闭预览

相关内容

中国无线经济白皮书,49页pdf
专知会员服务
14+阅读 · 2021年10月21日
专知会员服务
42+阅读 · 2020年12月18日
【电子书】机器学习实战(Machine Learning in Action),附PDF
专知会员服务
126+阅读 · 2019年11月25日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
7+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
5+阅读 · 2020年3月17日
Transfer Adaptation Learning: A Decade Survey
Arxiv
37+阅读 · 2019年3月12日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员