This study evaluated post traumatic stress disorder (PTSD) among frontline US physicians (treating COVID-19 patients) in comparison with second-line physicians (not treating COVID-19 patients), and identified the significance and patterns of factors associated with higher PTSD risk. A cross-sectional, web-based survey was deployed during August and September, 2020, to practicing physicians in the 18 states with the largest COVID-19 cases. Among 1,478 responding physicians, 1,017 completed the PTSD Checklist (PCL-5). First, the PCL-5 was used to compare symptom endorsement between the two physician groups. A greater percentage of frontline than second-line physicians had clinically significant endorsement of PCL-5 symptoms and higher PCL-5 scores. Second, logistic regression and seven nonlinear machine learning (ML) algorithms were leveraged to identify potential predictors of PTSD risk by analyzing variable importance and partial dependence plots. Predictors of PTSD risk included cognitive/psychological measures, occupational characteristics, work experiences, social support, demographics, and workplace characteristics. Importantly, the final ML model random forest, identified patterns of both damaging and protective predictors of PTSD risk among frontline physicians. Key damaging factors included depression, burnout, negative coping, fears of contracting/transmitting COVID-19, perceived stigma, and insufficient resources to treat COVID-19 patients. Protective factors included resilience and support from employers/friends/family/significant others. This study underscores the value of ML algorithms to uncover nonlinear relationships among protective/damaging risk factors for PTSD in frontline physicians, which may better inform interventions to prepare healthcare systems for future epidemics/pandemics.


翻译:这项研究评估了美国前线医生(治疗COVID-19病人)与二线医生(不治疗COVID-19病人)相比创伤后应激障碍(PSTSD)的创伤后应激障碍(PTSD),并查明了与创伤后应激障碍风险较高相关因素的重要性和模式。2020年8月和9月,为18个州的18个具有最大COVID-19病例的执业医生进行了跨部门、基于网络的调查。在1,478个作出答复的医生中,1,017名医生完成了PTSD检查清单(PCL-5)。首先,PCL-5用于比较两个医生组之间的症状认可。比二线医生的更大比例是临床上相当的PCL-5症状和PCL-5分数。第二,物流回归和七种非线机学习(ML)算法,通过分析不同重要性和部分依赖性地块来查明PTSD风险的潜在预测因素。PTSD风险的预测因素包括认知/心理诊断、职业特征、工作经验、社会支持、人口和工作场所特征特征特征。 最终的ML模型森林,查明的PLS-19级健康健康健康的症状的症状和心脏内伤后期研究中,这两类医生的不测测测测测算的不力风险。

0
下载
关闭预览

相关内容

专知会员服务
63+阅读 · 2021年3月9日
面向健康的大数据与人工智能,103页ppt
专知会员服务
110+阅读 · 2020年12月29日
专知会员服务
162+阅读 · 2020年1月16日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Nature 一周论文导读 | 2019 年 5 月 30 日
科研圈
15+阅读 · 2019年6月9日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
2018年中科院JCR分区发布!
材料科学与工程
3+阅读 · 2018年12月11日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
VIP会员
相关资讯
Nature 一周论文导读 | 2019 年 5 月 30 日
科研圈
15+阅读 · 2019年6月9日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
2018年中科院JCR分区发布!
材料科学与工程
3+阅读 · 2018年12月11日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员