Temporal irreversibility, often referred to as the arrow of time, is a fundamental concept in statistical mechanics. Markers of irreversibility also provide a powerful characterisation of information processing in biological systems. However, current approaches tend to describe temporal irreversibility in terms of a single scalar quantity, without disentangling the underlying dynamics that contribute to irreversibility. Here we propose a broadly applicable information-theoretic framework to characterise the arrow of time in multivariate time series, which yields qualitatively different types of irreversible information dynamics. This multidimensional characterisation reveals previously unreported high-order modes of irreversibility, and establishes a formal connection between recent heuristic markers of temporal irreversibility and metrics of information processing. We demonstrate the prevalence of high-order irreversibility in the hyperactive regime of a biophysical model of brain dynamics, showing that our framework is both theoretically principled and empirically useful. This work challenges the view of the arrow of time as a monolithic entity, enhancing both our theoretical understanding of irreversibility and our ability to detect it in practical applications.
翻译:暂无翻译