This work presents Neural Equivariant Interatomic Potentials (NequIP), a SE(3)-equivariant neural network approach for learning interatomic potentials from ab-initio calculations for molecular dynamics simulations. While most contemporary symmetry-aware models use invariant convolutions and only act on scalars, NequIP employs SE(3)-equivariant convolutions for interactions of geometric tensors, resulting in a more information-rich and faithful representation of atomic environments. The method achieves state-of-the-art accuracy on a challenging set of diverse molecules and materials while exhibiting remarkable data efficiency. NequIP outperforms existing models with up to three orders of magnitude fewer training data, challenging the widely held belief that deep neural networks require massive training sets. The high data efficiency of the method allows for the construction of accurate potentials using high-order quantum chemical level of theory as reference and enables high-fidelity molecular dynamics simulations over long time scales.
翻译:这项工作展示了神经等离子体间潜能(NequIP),这是一种SE(3)-等离子神经网络方法,用于从分子动态模拟的AB-iitio计算中学习从分子动态模拟的腹部计算中产生的共振潜力。虽然大多数当代对称性能模型使用的是变化性共变模型,而且只是在电弧上采取行动,但NequIP使用SE(3)-等离子体共振动模型,进行几何强量体的相互作用,从而导致原子环境的信息丰富和忠实的表述。这种方法在展示显著的数据效率的同时,在一组具有挑战性的各种分子和材料方面达到了最新精确度。NequIP以最多三个数量的培训数据优于现有模型,挑战了人们普遍认为深线性网络需要大规模培训的信念。该方法的高数据效率使得能够利用高分量化学水平的理论作为参考来构建准确潜力,并使得高纤维分子动态模拟能够长期进行。