In this survey we present the current status on robots performing manipulation tasks that require varying contact with the environment, such that the robot must either implicitly or explicitly control the contact force with the environment to complete the task. Robots can perform more and more manipulation tasks that are still done by humans, and there is a growing number of publications on the topics of 1) performing tasks that always require contact and 2) mitigating uncertainty by leveraging the environment in tasks that, under perfect information, could be performed without contact. The recent trends have seen robots perform tasks earlier left for humans, such as massage, and in the classical tasks, such as peg-in-hole, there is more efficient generalization to other similar tasks, better error tolerance, and faster planning or learning of the tasks. Thus, in this survey we cover the current stage of robots performing such tasks, starting from surveying all the different in-contact tasks robots can perform, observing how these tasks are controlled and represented, and finally presenting the learning and planning of the skills required to complete these tasks.


翻译:在本次调查中,我们展示了从事需要与环境有不同接触的操纵任务的机器人的现状,因此机器人必须隐含或明确控制与环境的接触力量,以完成这项任务;机器人可以执行更多的由人类仍然从事的操纵任务,关于以下主题的出版物越来越多:(1) 执行始终需要接触的任务;(2) 通过利用环境来减轻不确定性,在完全知情的情况下,可以不接触地执行的任务;最近的趋势已经看到机器人执行以前遗留给人类的任务,例如按摩;以及典型的任务,例如插孔等,对其他类似的任务有更有效率的概括化,更好的错误容忍度,以及更快地规划或学习任务。因此,在本次调查中,我们从调查所有不同的接触任务开始,观察这些任务是如何控制和代表的,最后介绍完成这些任务所需的技能的学习和规划。

0
下载
关闭预览

相关内容

专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
276+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
16篇论文入门manipulation研究
机器人学家
15+阅读 · 2017年6月6日
Arxiv
39+阅读 · 2021年11月11日
Arxiv
37+阅读 · 2021年9月28日
Arxiv
38+阅读 · 2020年3月10日
Few-shot Learning: A Survey
Arxiv
362+阅读 · 2019年4月10日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
VIP会员
相关VIP内容
专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
276+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
16篇论文入门manipulation研究
机器人学家
15+阅读 · 2017年6月6日
Top
微信扫码咨询专知VIP会员