The equation of state (EOS) embodies thermodynamic properties of compressible fluid materials and usually has very complicated forms in real engineering applications, subject to the physical requirements of thermodynamics. The complexity of EOS in form gives rise to the difficulty in analyzing relevant wave patterns. Concerning the design of numerical algorithms, the complex EOS causes the inefficiency of Riemann solvers and even the loss of robustness, which hampers the development of Godunov-type numerical schemes. In this paper, a strategy of local stiffened gas approximation is proposed for real materials. The stiffened gas EOS is used to approximate general EOS locally at each interface of computational control volumes so that the Riemann solver can be significantly simplified. In the meantime, the generalized Riemann problem (GRP) solver is adopted not only for high resolution purpose but effective reflection of the local thermodynamics as well. The resulting scheme is demonstrated to be efficient and robust and numerical examples display the excellent performance of such an approximation.
翻译:状态等式( EOS) 包含压缩液体材料的热力特性,通常在实际工程应用中具有非常复杂的形式,但须视热动力学的实际要求而定。 EOS 形式的复杂性导致分析相关波形模式的困难。关于数字算法的设计,复杂的 EOS 造成Riemann 解算器效率低下,甚至丧失稳健性,这阻碍了Godunov 型数字方法的发展。在本文中,为真实材料提出了一个当地硬化气体近似战略。硬化气体 EOS 用于计算控制量的每个界面的局部一般 EOS 近似一般 EOS, 使 Riemann 解算器大大简化。 同时, 通用的 Riemann 解算器不仅用于高分辨率目的,而且有效地反映当地热力学。 由此产生的办法证明是高效的、稳健健的和数字的例子显示了这种近似的极好性表现。