We study an EM algorithm for estimating product-term regression models with missing data. The study of such problems in the likelihood tradition has thus far been restricted to an EM algorithm method using full numerical integration. However, under most missing data patterns, we show that this problem can be solved analytically, and numerical approximations are only needed under specific conditions. Thus we propose a hybrid EM algorithm, which uses analytic solutions when available and approximate solutions only when needed. The theoretical framework of our algorithm is described herein, along with two numerical experiments using both simulated and real data. We show that our algorithm confers higher accuracy to the estimation process, relative to the existing full numerical integration method. We conclude with a discussion of applications, extensions, and topics of further research.


翻译:我们研究一种EM算法,用缺失的数据来估计产品-周期回归模型。对于这种可能性传统中的问题的研究,到目前为止只限于使用完全数字集成的EM算法。然而,在大多数缺失的数据模式下,我们表明,这个问题可以分析解决,数字近似只在特定条件下才需要。因此,我们建议一种混合的EM算法,在有可用的情况下使用分析性解决办法,仅在需要时使用近似解决办法。这里描述了我们的算法的理论框架,以及使用模拟和真实数据的两次数字实验。我们表明,我们的算法使估算过程比现有的完全数字集成法更加精确。我们最后讨论应用、扩展和进一步研究的专题。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
【硬核书】树与网络上的概率,716页pdf
专知会员服务
71+阅读 · 2021年12月8日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
ERROR: GLEW initalization error: Missing GL version
深度强化学习实验室
9+阅读 · 2018年6月13日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Arxiv
0+阅读 · 2022年1月13日
VIP会员
相关VIP内容
【硬核书】树与网络上的概率,716页pdf
专知会员服务
71+阅读 · 2021年12月8日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
ERROR: GLEW initalization error: Missing GL version
深度强化学习实验室
9+阅读 · 2018年6月13日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Top
微信扫码咨询专知VIP会员