Anonymity systems like Tor are vulnerable to Website Fingerprinting (WF) attacks, where a local passive eavesdropper infers the victim's activity. Current WF attacks based on deep learning classifiers have successfully overcome numerous proposed defenses. While recent defenses leveraging adversarial examples offer promise, these adversarial examples can only be computed after the network session has concluded, thus offer users little protection in practical settings. We propose Dolos, a system that modifies user network traffic in real time to successfully evade WF attacks. Dolos injects dummy packets into traffic traces by computing input-agnostic adversarial patches that disrupt deep learning classifiers used in WF attacks. Patches are then applied to alter and protect user traffic in real time. Importantly, these patches are parameterized by a user-side secret, ensuring that attackers cannot use adversarial training to defeat Dolos. We experimentally demonstrate that Dolos provides 94+% protection against state-of-the-art WF attacks under a variety of settings. Against prior defenses, Dolos outperforms in terms of higher protection performance and lower information leakage and bandwidth overhead. Finally, we show that Dolos is robust against a variety of adaptive countermeasures to detect or disrupt the defense.
翻译:托尔这样的匿名系统很容易受到网站指纹(WF)攻击的伤害, 当地被动窃听器的被动窃听器可以推断受害者的活动。 目前基于深层次学习分类的WF攻击成功地克服了许多拟议的防御。 虽然最近利用对抗性例子的防御提供了希望, 这些对抗性例子只能在网络会议结束后才能计算出来, 从而在实际环境中为用户提供很少的保护。 我们提议多洛斯, 该系统可以实时改变用户网络的实时交通流量, 以成功避免WF攻击。 多洛斯将假包输入交通跟踪, 计算输入输入式的输入式对抗性对抗性对称, 干扰了在WF攻击中使用的深层次学习分类。 补丁随后应用来实时改变和保护用户的交通。 重要的是, 这些补丁是用户方秘密的参数, 确保攻击者无法使用对抗性训练来击败Dolos。 我们实验性地证明, Dolos提供了94 ⁇ 保护, 防止在各种环境下的FFS攻击。 与先前的防御相反, Dolos在更高的保护性性表现和低程度的防御性防范性、 以及更强的防制式的防控波。