In Capacitated Vehicle Routing with Multiple Depots (CVRP-MD) we are given a set of client locations $C$ and a set of depots $R$ located in a metric space with costs $c(i,j)$ between $u,v \in C \cup R$. Additionally, we are given a capacity bound $k$. The goal is to find a collection of tours of minimum total cost such that each tour starts and ends at some depot $r \in R$ and includes at most $k$ clients and such that each client lies on at least one tour. Our main result is a $3.9365$-approximation based on rounding a new LP relaxation for CVRP-MD.
翻译:在多仓库容量约束车辆路径问题(CVRP-MD)中,给定一个度量空间中的客户位置集合 $C$ 和仓库位置集合 $R$,以及任意两点 $u,v \in C \cup R$ 之间的成本 $c(i,j)$。此外,给定一个容量约束 $k$。目标是找到一组总成本最小的路径集合,使得每条路径从某个仓库 $r \in R$ 出发并返回该仓库,且最多包含 $k$ 个客户,同时每个客户至少被一条路径覆盖。我们的主要结果是基于对 CVRP-MD 的一种新线性规划松弛进行舍入,得到一个 $3.9365$ 近似比的算法。