Generative moment matching networks (GMMNs) are introduced as dependence models for the joint innovation distribution of multivariate time series (MTS). Following the popular copula-GARCH approach for modeling dependent MTS data, a framework allowing us to take an alternative GMMN-GARCH approach is presented. First, ARMA-GARCH models are utilized to capture the serial dependence within each univariate marginal time series. Second, if the number of marginal time series is large, principal component analysis (PCA) is used as a dimension-reduction step. Last, the remaining cross-sectional dependence is modeled via a GMMN, our main contribution. GMMNs are highly flexible and easy to simulate from, which is a major advantage over the copula-GARCH approach. Applications involving yield curve modeling and the analysis of foreign exchange rate returns are presented to demonstrate the utility of our approach, especially in terms of producing better empirical predictive distributions and making better probabilistic forecasts. All results are reproducible with the demo GMMN_MTS_paper of the R package gnn.
翻译:生成瞬时匹配网络(GMMNs)是作为多变时间序列联合创新分布的依附模式引入的。最后,按照流行的千兆-千兆赫方法,模拟依赖性多边贸易体系数据,提出了允许我们采用替代的GMMN-GARCHH方法的框架。首先,ARMA-GARCHH模型用于捕捉每个单体边际时间序列中的序列依赖性。第二,如果边际时间序列的数量很大,则主要组成部分分析(PCA)被用作一个减少维度的步骤。最后,剩余的跨部门依赖性通过我们的主要贡献,即GMMNM(我们的主要贡献)模型进行。GMND高度灵活,易于模拟,这是Copula-GARCH方法的主要优势。介绍了涉及产值曲线模型和分析外汇回报的应用,以展示我们方法的效用,特别是在产生更好的经验预测分布和作出更好的概率预测方面。所有结果都与R套件的GMMN_MTS_paper重现。