The human microbiome has an important role in determining health. Mediation analyses quantify the contribution of the microbiome in the causal path between exposure and disease; however, current mediation models cannot fully capture the high dimensional, correlated, and compositional nature of microbiome data and do not typically accommodate dichotomous outcomes. We propose a novel approach that uses inverse odds weighting to test for the mediating effect of the microbiome. We use simulation to demonstrate that our approach gains power for high dimensional mediators, and it is agnostic to the effect of interactions between the exposure and mediators. Our application to infant gut microbiome data from the New Hampshire Birth Cohort Study revealed a mediating effect of 6-week infant gut microbiome on the relationship between maternal prenatal antibiotic use during pregnancy and incidence of childhood allergy by 5 years of age.
翻译:人类微生物在确定健康方面具有重要作用。 调解分析量化了微生物在接触和疾病之间因果路径中的贡献; 然而,目前的调解模型无法完全捕捉微生物数据的高维、关联性和组成性质,而且通常不包含二分结果。 我们建议采用新颖的方法,用反比重来测试微生物的调解效果。 我们利用模拟来证明我们的方法获得了高维调解人的力量,对于接触和调解人之间的互动效果是不可知的。 我们对婴儿肠内微生物数据的应用,从新罕布什尔出生科特研究中发现,六周婴儿肠微生物对孕期产前抗生素使用与5岁前儿童过敏症之间的关系具有介质效应。