Recent technological developments have led to big data processing, which resulted in significant computational difficulties when solving large-scale linear systems or inverting matrices. As a result, fast approximate iterative matrix inversion methodologies via Graphical Processing Unit (GPU) acceleration has been a subject of extensive research, to find solutions where classic and direct inversion are too expensive to conduct. Some currently used methods are Neumann Series (NS), Newton iteration (NI), Chebyshev Iteration (CI), and Successive Over-Relaxation, to cite a few. In this work, we develop a new iterative algorithm based off the NS, which we named 'Nested Neumann' (NN). This new methodology generalizes higher orders of the NI (or CI), by taking advantage of a computationally free iterative update of the preconditioning matrix as a function of a given 'inception depth'. It has been mathematically demonstrated that the NN: (i) convergences given the preconditioning satisfies the spectral norm condition of the NS, (ii) has an order of rate of convergence has been shown to be equivalent to the order (inception depth plus one), and (iii) has an optimal inception depth is an inception depth of one or preferably two, depending on RAM constraints. Furthermore, we derive an explicit formula for the NN, which is applicable to massive sparse matrices, given an increase in computational cost. Importantly, the NN finds an analytic equivalancy statement between the NS and the the NN (NI, CI, and higher orders), which is of importance for mMIMO systems. Finally, the NN method is applicable positive semi-definite matrices for matrix inversion, and applicable to any linear system (sparse, non-sparse, complex, etc.).


翻译:最近的技术发展导致大数据处理,这导致在解决大型线性系统或反转矩阵时出现严重的计算困难。因此,通过图形处理股(GPU)加速,快速近似迭代基矩阵反转方法成为广泛研究的主题,以寻找传统和直接反转过于昂贵的解决方案。一些目前使用的方法是Neumann系列(NS),Newton迭代(NI),Chebyshev Iteration(CI)和连续超缩,引证几个例子。在这项工作中,我们根据NS开发了一个新的迭代算法,我们称之为“Neumann”(NNNNE) 。这种新方法将NI(或CI)的更高订单普遍化,利用对先决条件矩阵进行计算自由的迭代更新,作为给定的“感知深度”的函数。一些目前使用的方法是Neumann系列(NS(NS), Cheby Ceple Relax) (I) (irequired) (i) (a) (满足了给给定的光谱规范条件的前提条件) (i) (ireal) (ial) (ial rual) (ial) (ii) (ii) (the) (the) (the) (NErder) (the) (the) (the) (NBral ruder) (NS) (和 mal destral destral develut) (这是一个最深的深度和最深的内基) (U) (U) (我们的系统(我们(我们(我们的内基) (I) (I) (O) (O) (O) (O) (O) (O) (O) (O) (O) (我们的深度和一个直) (O) (O) (I) (I) (O) (I) (I) (I) (I (I) (I) (I) (I) (I) (I) (I) (I) (I) (I) (I) (I) (I) (I) (I) (I) (I) (I) (I) (I) (I) (I) (I) (I) (I) (I) (I) (I) (I) (I) (I) (I) (

0
下载
关闭预览

相关内容

FAST:Conference on File and Storage Technologies。 Explanation:文件和存储技术会议。 Publisher:USENIX。 SIT:http://dblp.uni-trier.de/db/conf/fast/
专知会员服务
159+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年2月17日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员