In this paper, we propose a system to estimate heterogeneous concurrent drug usage effects on overdose estimation, that consists of efficient co-variate selection, sub-group selection, generation of and heterogeneous causal effect estimation. Although, there has been several association studies have been proposed in the state-of-art methods, heterogeneous causal effects have never been studied in concurrent drug usage and drug overdose problem. We apply our framework to answer a critical question, "can concurrent usage of benzodiazepines and opioids has heterogeneous causal effects on opioid overdose epidemic?" Using Truven MarketScan claim data collected from 2001 to 2013 have shown significant promise of our proposed framework's efficacy. Our efficient causal inference model estimated that the causal effect is higher (19%) than the regression studies (15%) to estimate the risks associated with the concurrent usage of opioid and benzodiazepines on opioid overdose.


翻译:在本文中,我们提出一个估算药物使用对过量估计的不同并存效应的系统,由高效的共变选择、分组选择、产生和多种因果估计组成。虽然在最先进的方法中已经提出了几项关联研究,但从未在同时使用药物和吸毒过量问题中研究过多种因果效应。我们运用我们的框架回答一个关键问题,即“苯并二氮杂卓和类阿片同时使用是否会对类阿片过量流行产生不同因果效应?”使用2001年至2013年收集的特鲁芬市场扫描索赔数据,显示了我们拟议框架有效性的重要前景。我们有效的因果推断模型估计,因果效应(19%)高于回归研究(15%),以估计类阿片和类阿片使用并用苯并用成氮杂卓卓类对类阿片过量的风险。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
“CVPR 2020 接受论文列表 1470篇论文都在这了
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Arxiv
0+阅读 · 2021年7月6日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
110+阅读 · 2020年2月5日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
Top
微信扫码咨询专知VIP会员